

Maxim S. Eckmann, M.D.

Professor of Anesthesiology and Pain Medicine
UT Health San Antonio, Texas, USA

Faculty Disclosure

Nothing to disclose
Yes, as follows: X

Honoraria/Expenses	
Consulting/Advisory Board	AVANOS
Speakers Bureau	Dannemiller
Funded Research (Individual)	
Funded Research (Institution)	Abbot, Boston Scientific, SPR
Royalties/Patent	
Stock Options	
Ownership/Equity Position	Insight Dental Systems, iKare Holdings
Employee	UT Health San Antonio
Other	

Off-Label Product Use

Will	Will you be presenting or referencing off-label or investigational use of a therapeutic product?				
	No X				
	Yes, as follows:				

Goals and Objectives

- Outline an approach for organizing causes of low back pain (LBP)
- Apply organized approach to LBP to select and interpret physical exammaneuvers and assessments
- Recognize differential evaluation of LBP sources to include:
 - Acute vs Chronic LBP
 - Assessment of "Red Flags"
 - Myofascial LBP
 - Facetogenic LBP
 - Sacroiliac Pain
 - Radicular LBP
 - Discogenic LBP
 - Vertebral/Sacral Fracture Pain
 - Referred Pain
 - Non-specific LBP

Impact of Low Back Pain (LBP)

- Fifth most common reason for all physician visits (USA).
- Prevalence
 - 25% report at least 1 day LBP in last 3 months
 - 7-8% report severe LBP in last year
 - 75-85% lifetime prevalence in industrialized society
- Cost
 - \$26 billion direct health care costs 1998, now >\$80 billion
 - 2% of workforce compensated for LBP
 - 5% of patients w/back pain disability account for 75% of the total costs.

Factors Associated with Low Back Pain

- Heavy lifting
- Twisting and bending
- Physical activity
- Obesity
- Arthritis and osteoporosis
- Pregnancy
- Age > 30 years
- Bad posture
- Stress and depression

Predictors of Delayed Recovery

- Depression / Anxiety
- Passive coping
- Job Dissatisfaction
- Significant Disability
- Disputed Compensation Claims
- Somatization
- Emotional Distress

General Assessment

Physiologic Effects of Acute Pain, Generally Absent in Chronic Pain

- Metabolism increased
 - Poor healing
 - Muscle breakdown / weakness
- Cardiovascular
 - Tachycardia, HTN
- Decreased Movement
 - Increased risk of thromboembolism
 - Further deconditioning

- Respiratory Derangement
 - Tachypnea
 - Atelectasis
- Adrenal axis
 - Sodium and water retention
- Gastrointestinal
 - Reduced motility
- Immunological
 - Decreased NK cell count
 - Neurogenic inflammation

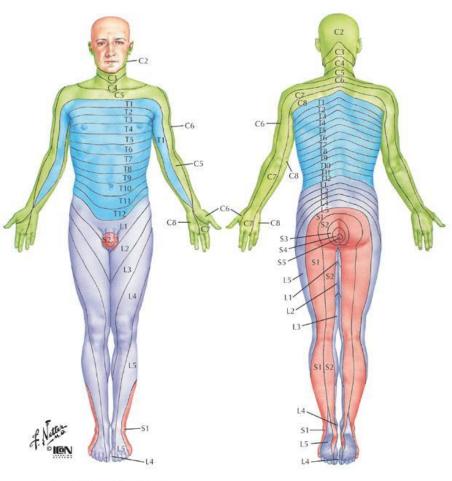
Detecting Pain: Pain Behavior

- First described by Fordyce as denoting the verbal and nonverbal behaviors exhibited by pain sufferers that serve to communicate the fact that they are experiencing pain.
- Examples:
 - Limping, guarding, grimacing, moaning.
- Origin:
 - 1) Nociceptive input, spinal reflexes, involuntary
 - 2) Operant conditioning (later)

Neuroanatomy: Cutaneous Dermatomes

• <u>Clavicle</u>

• <u>Umbilicus</u> *T10*


• <u>Thumb</u> *C6*

Medial 1stToeL4

• 4th, 5th finger *c8*

Lateral Foot,
 5th Toe
 \$1

• Nipples T4

Levels of principal dermatomes

C5 Clavicles C5, 6, 7 Lateral parts of upper limbs C8, T1 Medial sides of upper limbs

C6 Thum C6, 7, 8 Hand

8 Ring and little fingers 4 Level of nipples Level of umbilicus

T12 Inguinal or groin regions
L1, 2, 3, 4 Anterior and inner surfaces of lower limbs
L4, 5, S1 Foot

L4 Medial side of great toe S1, 2, L5 Posterior and outer surfaces of lower limbs

Lateral margin of foot and little toe

Perineum

Neuroanatomy: Cutaneous Dermatomes for Referred Pain

•	<u>Central</u>	Diaphragm
	<i>C4</i>	

- Pancreas, Spleen **T5-T10**
- Kidney, Ovaries, Testes T10-L1

• <u>Lungs</u>

- Somach, Liver, GB *T6-T9*
- <u>Ureters</u> *T11-T12*

• <u>Heart</u> *T1-T4*

• Adrenals T8-L1

• <u>Uterus</u> *T11-L2*

• <u>Aorta</u> *T1-L2*

• Small Intestine **T9-T11**

• <u>Bladder, Prostate</u> **\$2-\$4**

• Esophagus *T3-T8*

• <u>Colon</u> *T10-L1* • <u>Urethra, Rectum</u> *\$2-\$4*

Visceral Diseases referring pain to the low back

- Peptic ulcer
- Pancreatitis
- Nephrolithiasis
- Pyelonephritis
- Prostatitis
- Pelvic infection or tumors
- Aortic dissection

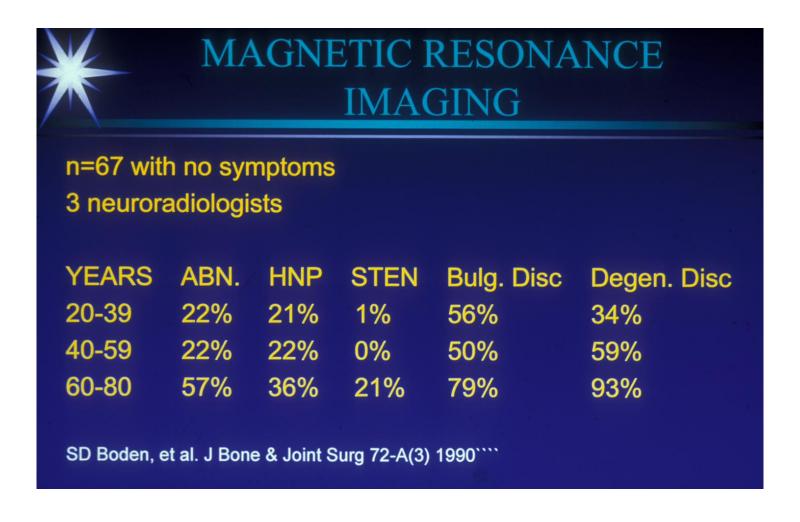
Consideration for consultation: Specific Problems to Target

Axial Pain

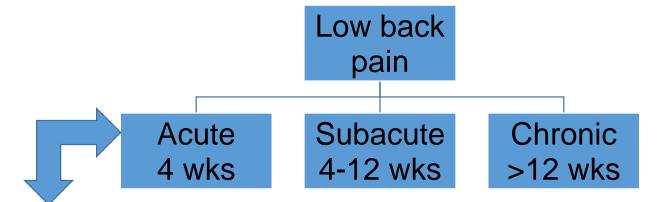
- Myofascial
- Tendinous / Ligamentous
- Facet Joint
- Vertebral
- Sacroiliac
- Discogenic

With Neurologic Sx

- Radiculitis / Neuroforaminal Stenosis
- Spinal canal stenosis
- Piriformis Syndrome
- Lumbar Post-Laminectomy Syndrome

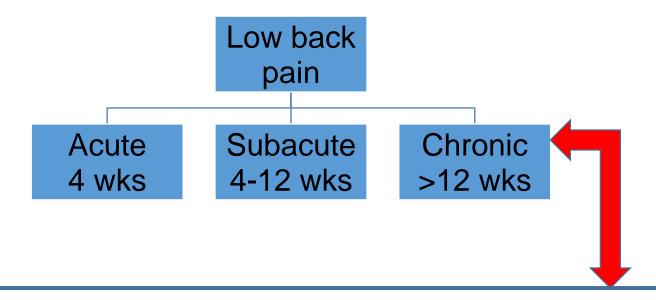

Axial low back pain: History

- Mechanism of Injury
 - Specific Injury (e.g. T-bone MVA)
 - Indolent course
- Radiation
 - Above knee (e.g. sacroiliac pain, facet pain)
 - Below knee, dermatomal (e.g. L5 radiculopathy)
 - Below knee, non-dermatomal (e.g. spinal stenosis, CRPS)
- Quality (key words: burning, shooting, tingling)
- Timing / Precipitating factors
- Psychosocial problems/stressors


Summary of Common Physical Exam Maneuvers for LBP

- Gait
 - Identify potential problems below the spine
- Neurological
 - Sensation, Strength (L5 extensor hallicus longus)
 - Reflexes: L4 (patellar), L5 (biceps femoris), S1 (ankle)
- Quadrant loading / Prone hip extension (facet joints)
- Segmental tenderness / trigger points (facet / myofascial)
- Faber / Gaenslen tests (hips/SIJ)
- Straight leg raise (SLR) test / Crossed SLR (radiculitis)
 - SLR 91% sensitive / Crossed SLR 88% specific *

Radiologic Imaging: Importance of Clinical Correlation



Acute versus Chronic Pain

- 50 to 75% recover in 4 weeks
- 90% recover in 6 weeks
- Functional outcome depends more on patient behavior than on the medical treatment
- Keys to Recovery
 - Maintain function
 - Manage psychosocial distress
 - Be as active as possible
 - Return to work as soon as possible

Acute versus Chronic Pain

- 30% of patients report at least moderate pain 1 year after acute episode
- 20% of patients report significant activity limitations

"RED Flags"

Red Flags

- "Red Flags" are symptoms suggestive of serious underlying pathology.
 - In isolation not very predictive, guidelines vary
- Screening questions for acute LBP, or chronic LBP with change in symptoms
- Present in about 1-4% of cases.
 - Fracture (5-6%)
 - Malignancy (1-2%) esp. metastasis from prostate, breast and lung
 - Infection (1%) osteomyelitis, discitis, abscess
 - Cauda Equina Syndrome (0.4%)
 - Ankylosing spondylitis: 0.3%
- If serious cause of LBP is suspected, further workup is warranted
 - Imaging
 - Laboratory assay

Associations of Serious Back Pain Etiology

Fracture

- Trauma
- Age > 50y
- Age > 70y

Malignancy

- H/o cancer
- Unexplained weight loss
- Pain awakens from sleep
- Age > 50 y
- Age > 70 y

• Infection

- Fevers, chills, sweating
- Recent infection
- Pain awakens from sleep
- Persistent night sweats
- Cauda Equina Syndrome
 - Recent loss of bowel control
 - Recent loss of bladder control
- Over 16 international guidelines and 46 symptoms/signs exist.

Predictive value of risks, symptoms, signs

	No. (%)	Sens. (%)	Spec. (%)	PPV†	NPV†	PLR†	NLR†	of Diagnosis (%)
Fracture	554 (5.6)							
Age of >50 yr	410 (4.1)	74	32.9	6.1 (5.6-6.7)	95.5 (94.8-96.2)	1.1 (1.05-1.16)‡	0.79 (0.69-0.91)‡	6.1
Age of >70 yr	171 (1.7)	3.9	80	8.4 (7.2-9.7)	95.2 (94.7-95.6)	1.55 (1.36-1.76)‡	0.86 (0.82-0.91)‡	8.4
Trauma	137 (1.4)	24.7	88.6	11.3 (9.7-13.3)	95.2 (94.8-95.7)	2.17 (1.86-2.54)‡	0.84 (0.81-0.89)‡	11.4
Malignancy	159 (1.6)							
Age of >50 yr	114 (1.2)	71.7	32.6	1.7 (1.4-2.1)	98.6 (98.1-99.0)	1.06 (0.96-1.17)	0.87 (0.68-1.11)	1.7
Age of >70 yr	36 (0.4)	22.6	79.5	1.8 (1.3-2.5)	98.4 (98.1-98.7)	1.1 (0.82-1.47)	0.97 (0.9-1.06)	1.8
Pain awakens from sleep	88 (0.9)	55.4	41.8	1.5 (1.2-1.9)	98.3 (97.8-98.7)	0.85 (0.83-1.1)	1.07 (0.9-1.27)	1.4
Unexplained weight loss	13 (0.1)	8.2	95.6	3 (1.7-5.1)	98.5 (98.2-98.7)	1.87 (1.1-3.17)‡	0.96 (0.92-1.01)	3.0
Cancer	49 (0.5)	32	95.6	10.5 (8-13.8)	98.9 (98.6-99.1)	7.25 (5.65-9.3)‡	0.71 (0.64-0.79)‡	10.6
Infection	120 (1.2)							
Fever, chills, or sweating	14 (0.1)	11.7	93.2	2 (1.2-3.5)	98.9 (98.6-99.1)	1.71 (1.04-2.81)‡	0.95 (0.89-1.01)	2.0
Pain awakens from sleep	69 (0.7)	57.5	41.8	1.2 (0.9-1.5)	98.8 (98.4-99.1)	0.99 (0.85-1.15)	1.02 (0.82-1.25)	1.2
Persistent sweating at night	21 (0.2)	17.5	86.1	1.5 (1-2.4)	98.8 (98.6-99.1)	1.26 (0.85-1.86)	0.96 (0.88-1.04)	1.5
Recent infection	29 (0.3)	24.2	97.4	10.2 (7.1-14.5)	99.1 (98.8-99.2)	9.31 (6.63-13.07)‡	0.78 (0.7-0.86)‡	10.2
Cauda equina syndrome	36 (0.4)							
Recent loss of bladder control	8 (0.1)	22.2	90.4	0.8 (0.4-1.7)	99.7 (99.5-99.8)	2.31 (1.25-4.27)‡	0.86 (0.72-1.03)	0.9
Recent loss of bowel control	5 (0.1)	13.9	95	1 (0.4-2.5)	99.7 (99.5-99.8)	2.78 (1.23-6.3)‡	0.91 (0.8-1.03)	1.1

J Bone Joint Surg Am. 2018;100:368-74

Increased value of considering multiple factors

	Sens.	Spec.	PPV†	NPV†	PLR†	NLR†	Probability of Diagnosis (%)
Fracture							
Combination 1: trauma and age of >50 yr	14.8	94.2	13.1 (10.6-16.0)	94.9 (94.4-95.4)	2.54 (2.05-3.16)‡	0.90 (0.87-0.94)‡	13.1
Combination 2: trauma and age of >70 yr	5.2	98.7	20.4 (14.3-28.1)	94.6 (94.2-95.1)	4.35 (2.92-6.48)‡	0.96 (0.94-0.98)‡	20.5
Malignancy							
Combination: unexplained weight loss and cancer	2.5	99.8	14.3 (4.7-33.6)	98.4 (98.2-98.7)	10.25 (3.6-29.21)‡	0.98 (0.95-1)	14.3
Infection							
Combination: fever, chills, or sweating, and a recent infection	7.5	99.4	13.8 (6.9-25.2)	98.9 (98.6-99.1)	13.15 (6.66-25.97)‡	0.93 (0.88-0.98)‡	13.8
Cauda equina syndrome							
Combination: recent loss of bladder control and recent loss of bowel control	8.3	97.2	1.1 (0.3-3.4)	99.7 (99.5-99.8)	3 (1.01-8.92)‡	0.94 (0.85-1.04)	1.2

When to Refer to Specialist / Surgeon

- Bladder/bowel dysfunction
- Hypoesthesia over the perineum
- Rapidly progressing neurological dysfunction
 - Loss of strength/sensation
 - Hypo or Hyperreflexia
- Failed non-operative therapy in presence of known HNP, severe stenosis, spinal instability

Myofascial LBP

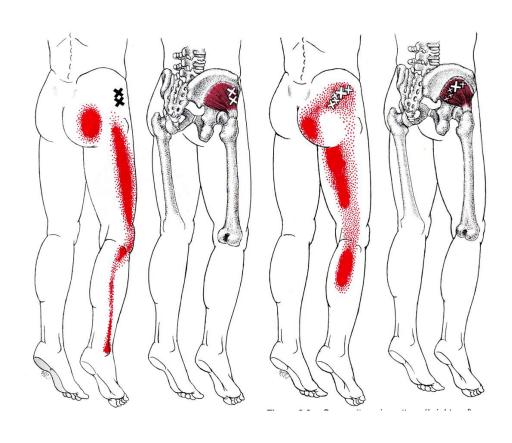
Myofascial Pain Syndrome (MPS)

- Sensory, motor or autonomic signs, and symptoms originated by hyperirritable nodules in a taut band of skeletal muscle.
- Estimated lifetime prevalence 85%.
- These taut bands reflect myofascial trigger points (MTrPs).
- MTrPs radiate in characteristic patterns upon stimulation.
 - Treatment focuses on returning muscle bands to normal working length.
 - May be found in association with spine pain, possibly due to spontaneous motor endplate activity, stiffness, or central sensitization.
- Tender points, in comparison, characteristically do not radiate.

Examination of MTrPs

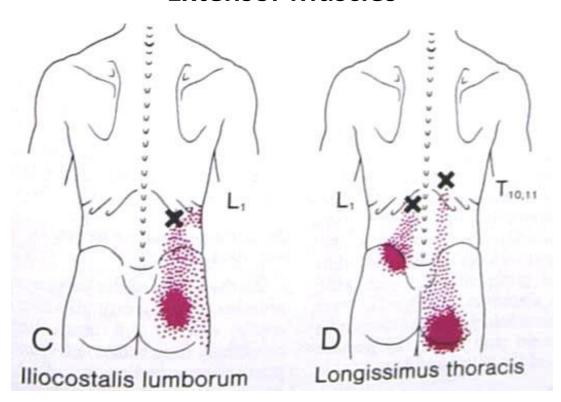
Muscle Direction

Finger Movement

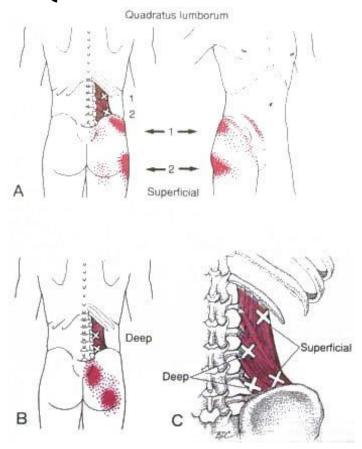

Pressure Pain Threshold Testing (PPT) e.g. kg/cm²

Referral Patterns for the Low Back / Lower Extremities

Gluteal

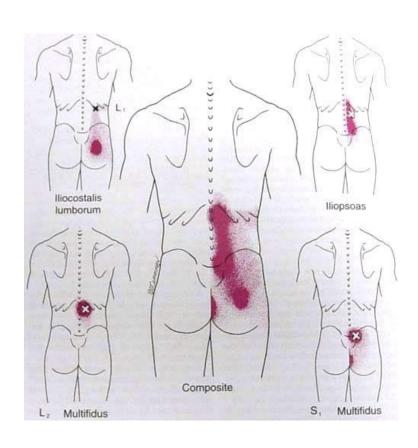

TrP₁ TrP₂ TrP₃ TrP₂ TrP₃

Tensor Fascia Latae

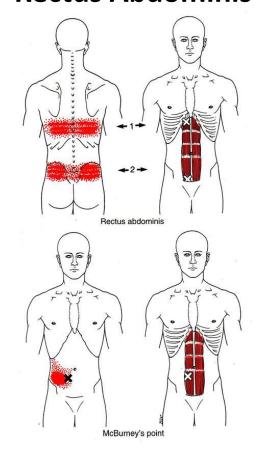


Referral Patterns for the Low Back / Lower Extremities

Extensor Muscles



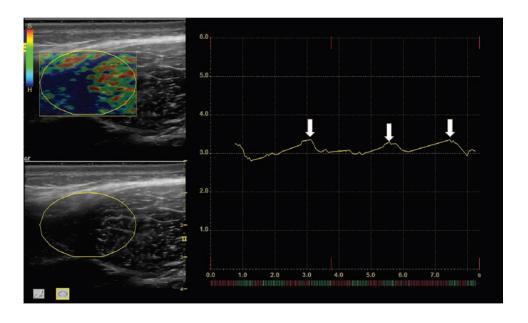
Quadratus Lumborum



Referral Patterns for the Low Back / Lower Extremities

Multifidi and Others

Rectus Abdominis



Quantitative Testing for MPS?

Sonoelastography and PPT difference between active MTrPs, latent MTrPs, and control points.

F) A–L A–C L–	C
	,
	(0.001) (0.41) (0.001) (0.69) (0.034) (0.62) (0.091) (-0.59) (0.001) (-1.51) (0.003)

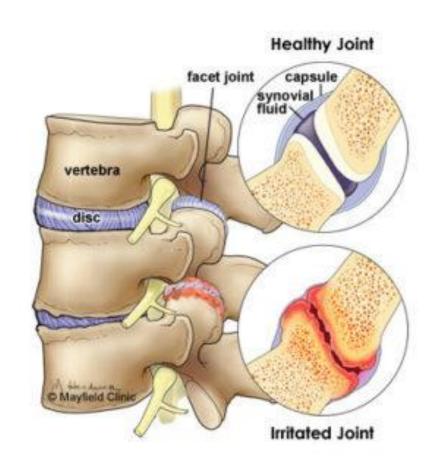
Axial Pain: Tendinous / Ligamentous pain

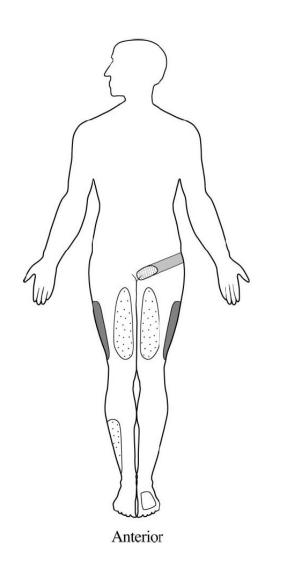
• Ligaments

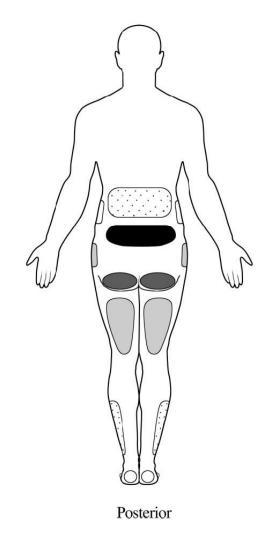
- Part of the spine stabilization system
- Disc annulus / facet capsule / spinal ligaments
- Embedded mechanoreceptors in ligaments important in maintenance of proper posture and muscle coordination

• Diagnosis

- Difficult to differentiate from other sources of pain
- Suspect in radiographically unremarkable spines.

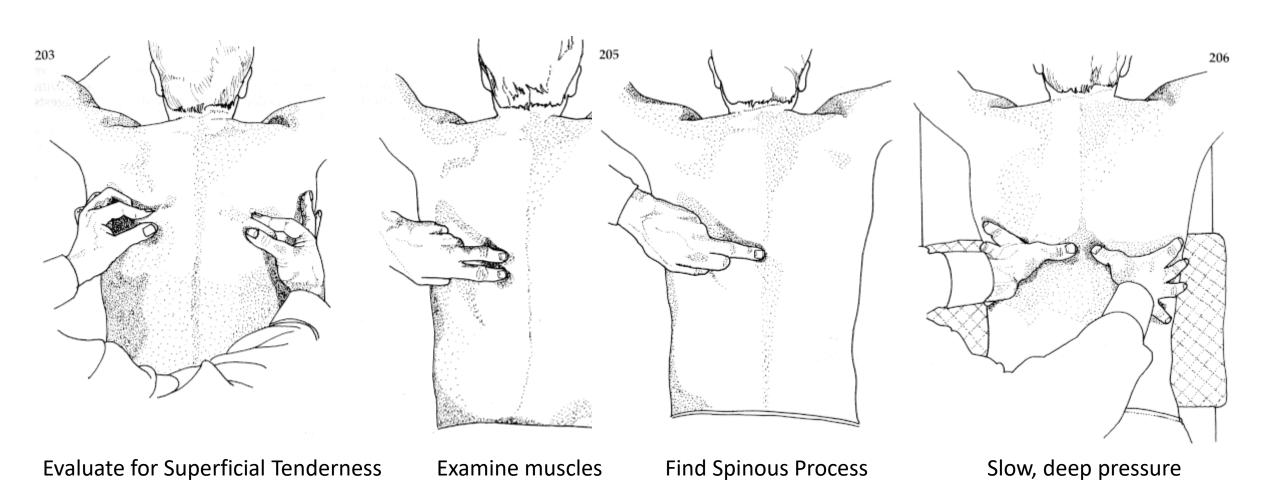

Treatment

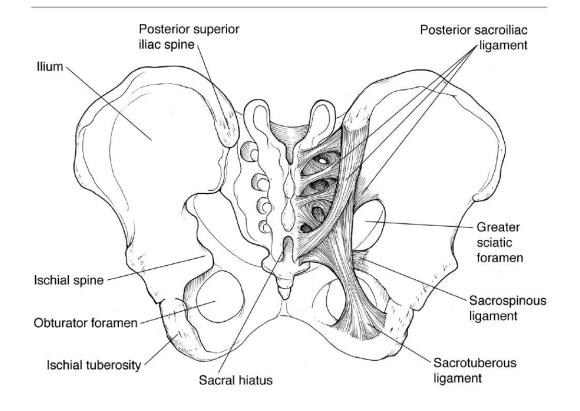

- Conservative / non-pharmacologic / pharmacologic
- Bed rest / inactivity not recommended


Am J Sports Med. 2008 Jul;36(7):1347-57. Spine. 2004 Oct 1;29(19):2126-33. Eur Spine J. 2006 May;15(5):668-76.

Facetogenic LBP

Clinical Presentation




Diagnosis of Lumbar Facet Pain

- Prevalence: 5-42% depending on the study. Increases with age.
- Classic Symptoms / Signs / Risk Factors
 - Axial (Unilateral) Pain
 - Radiation: lower facet joints buttock, thigh, groin, and sometimes lower leg
 - Radiation: upper lumbar facet joints flank, hip, groin, and lateral thigh.
 - No nerve root tension sign
 - Increased pain with back extension, quadrant loading (but can with flexion)
 - Paraspinal Tenderness
 - Age >65
- Contemporary studies have had difficulty confirming these signs/symptoms as predictive.
- Significant Referral Pattern Overlap
- Diagnosis confirmed with controlled diagnostic blocks

Exam – Facetogenic Pain vs Other Sources

Sacroiliac Pain

Axial Pain: Sacroiliac Pain

- Incidence:
 - 12% of low back pain
- Diagnosis
 - Physical exam maneuvers
 - Poorly predictive (~60%)
 - Sacral sulcus tenderness
 - Faber / Gaenslen tests
 - Diagnostic injections
 - Also inconsistent
 - Capsule leakage

SIJ Provocation Maneuvers and Symptoms

Table 2
Sensitivity and Specificity of Major Diagnostic Tests Used to Identify
Those With Intra-articular Sacroiliac Joint Pain ^{1,2,13,15-17}

Test	Sensitivity	Specificity
Sacroiliac joint pain	++++	+
Groin pain	+	+ + +
Buttock pain	++++	+
Indicating posterior superior iliac spine as pain source	++++	+ +
Abnormal sitting posture	+	++++
Pain lessens with NSAIDs	+ +	+ +
Pain lessens with exercise	+ +	++++
Pain lessens with manipulation	+ + +	++++
Gillet's test	+ +	+ + +
Patrick's test	+ + +	+
Gaenslen's test	+ + +	+ +
Sacral sulcus tenderness	++++	+
Midline sacral thrust	+ + +	+ +
Bone scan	+ +	++++
Computed tomography	+ + +	+ + +

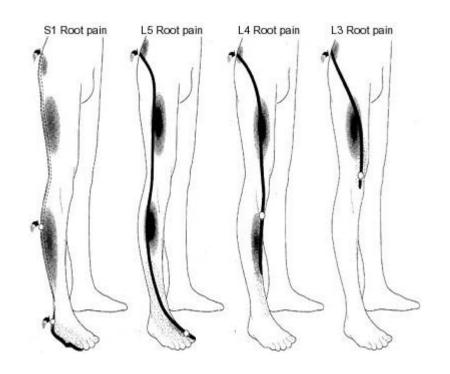
TARLE	1 1	Differentia	I diadr	nosis
IADLL		Dillei Ellila	ı ulaul	IUSIS

- I. Piriformis Syndrome
- II. Hip joint pathology
 - a. Fracture
 - b. Avascular necrosis
 - c. Osteoarthritis
- III. Discogenic pain
- IV. Zygapophysial joint pain
- V. Rheumatoid arthritis
- VI. Ankylosing spondylitis
- VII. Myofascial pain
- VIII. Lateral trochanteric bursitis
 - IX. Referred pain
 - X. Malignancy
 - XI. Visceral referred pain
- XII. Radiculopathy

Sacroiliac Pain and Spondyloarthropathies

Adult Seronegative Spondyloarthropathies: Disorders With the Highest Degree of Sacroiliac Joint Involvement ¹¹			
Characteristic	Ankylosing Spondylitis	Reactive Arthritis (Reiter's Syndrome)	Psoriatic Arthropathy
HLA-B27 frequency	90%	60% to 80%	50%
Sacroiliitis	Almost 100%	<50%	Approximately 20%
Symmetry of sacroiliitis	Symmetric	Asymmetric	Asymmetric
Typical age of onset	Adult <40 yr	Young to middle aged	Young to middle aged
Peripheral joint involvement	Approximately 25%	Approximately 90%	Approximately 95%
Type of onset	Gradual	Acute	Variable
Eye involvement	30%	Common	Occasional
Skin or nail involvement	None	Common	Almost 100%
Infectious agents as triggers	Unknown	Yes	Unknown
Sex ratio	M:F = 3:1	Mostly males	Males = Females

Radicular, Ischemic, and Neuropathic Pain

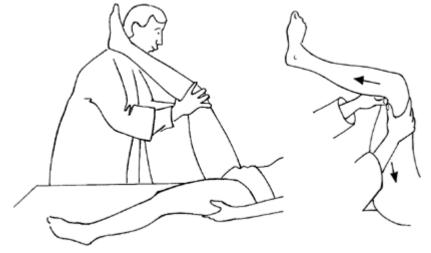

Neuropathic Pain: Radiculitis / Radiculopathy

Causes

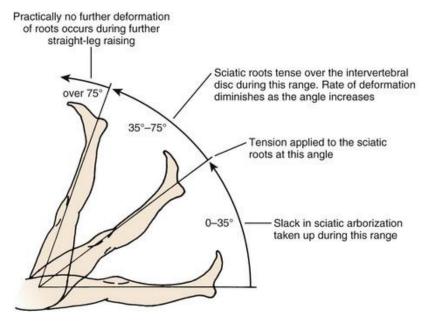
- Disc Herniation
- Disc leakage
- Spondylosis
- Tumor invasion

Diagnosis

- History / neurologic exam
- Straight leg raise (SLR) / Crossed straight leg raise
 - SLR 91% sensitive / Crossed SLR 88% specific
- Seated Slumped Root Test exceeds SLR sensitivity in some studies
- Motor Exam, include Extensor Hallicus Longus (L5), Reflexes (L4-S1)
- Sensory Exam (light touch, pinprick)



Examinations for Lumbar Radiculitis



Slump Test

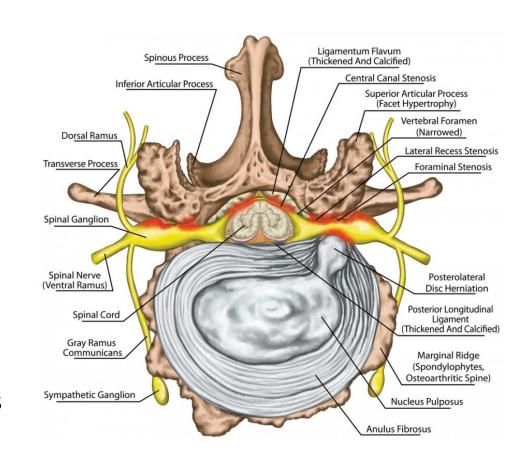
Bowstring

Straight Leg Raise

Lasegue's Sign

Neuropathic Pain: Spinal (Canal) Stenosis

<u>Etiology</u>


- Central Disc Herniation
- Ligamentum Flavum Hypertrophy
- Spondylosis
- Tumor invasion

Diagnosis

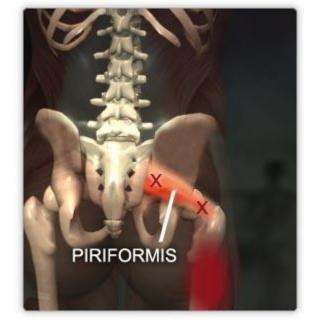
- Similar to workup for radiculopathy
- History of neurogenic claudication
- Radicular symptoms without radicular signs
 - i.e. SLR test can be negative

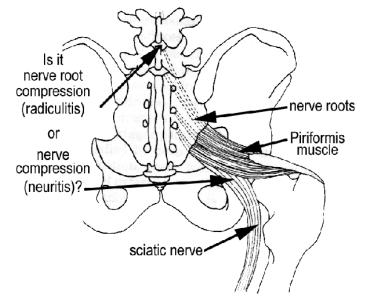
Treatment

- Same as for radiculitis
- May require surgical intervention

Neuropathic Pain: Piriformis Syndrome

Etiology


- Piriformis muscle tightening /irritation
- Sciatic nerve runs in close proximity (or through)
- Pressure on sciatic nerve imitates radiculitis
- May be associated with sacroiliac joint dysfunction


• Diagnosis

Direct palpation of trigger point

• Treatment

- Piriformis stretching
- Piriformis trigger point injection

Pain of the Anterior Spine Elements, Disc and Vertebral Body

Axial Pain: Discogenic Pain

• Incidence:

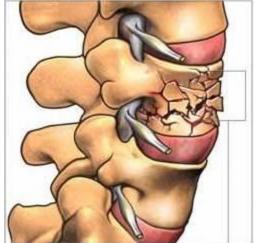
- Up to 39% of low back pain
- More common in early adulthood

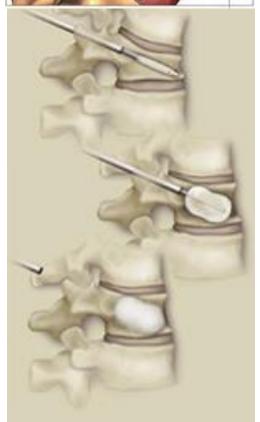
Etiology

 Pain from annulus – fissure leading to ingrowth of nociceptive nerves

Diagnosis

- No well validated physical exam maneuvers
 - Manual shear test?
- Provocative Discography is the gold standard confirmatory test

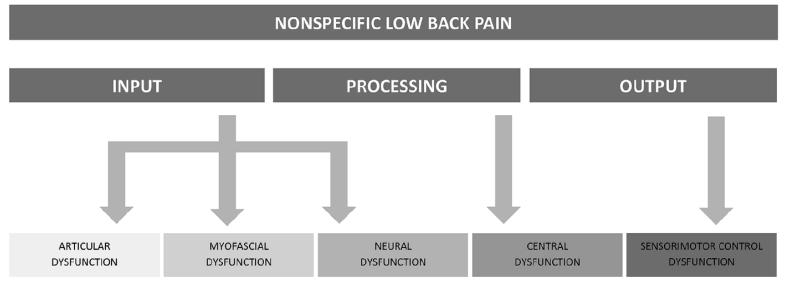




Clin J Pain. 2006 Jun;22(5):468-81.

Axial Pain: Vertebral Pain

- Pathologic fractures
 - Osteoporosis
 - Tumor invasion / metastases
- Diagnosis
 - Tuning fork test used but not well validated
 - Plain films
 - CT scan
- Treatment
 - Promote mineralization
 - Bisphosphenates
 - Vertebral Augmentation
 - XRT


N Engl J Med. 1996 Feb 22;334(8):488-93. Acta Radiol. 2007 Feb;48(1):89-95.

Non-Specific Low Back Pain (NSLBP)

NSLBP - Features

- Over 80% of LBP complaints cannot be attributed to a specific disease or anatomic abnormality.
- Pragmatic Classification
- Heterogeneous population
 - Cognitive and affective components
 - Course of recovery
- Several different etiologies proposed
 - Functional/Anatomical
 - Neurologic/Central
 - Sensorimotor
- Conservative Management, including PT; non-opioid medical therapy

NSLBP – Proposed Etiologies

Musculoskeletal Science and Practice 34 (2018) 66–76

Definitions of the dysfunction patterns.

Dysfunction pattern	Definition
Articular dysfunction pattern	Low back disorders in which you presume the dominant cause of nociception/pain refers to an articular structure dysfunction (facet joint, capsuloligamentous structure, disc, etc.)
Myofascial dysfunction pattern	Low back disorders in which you presume the dominant cause of nociception/pain refers to a myofascial structure dysfunction (muscle, fascia, tendon, etc.)
Neural dysfunction pattern	Low back disorders in which you presume the dominant cause of nociception/pain refers to a neural structure dysfunction (nerve root, peripheral nerve, etc.)/neuropathic pain
Central dysfunction pattern	Low back disorders in which you presume the dominant underlying cause is not related to a structural cause, but refers to a pain processing dysfunction (e.g. hyperalgesia due to central sensitization)
Sensorimotor control dysfunction pattern	Low back disorders in which you presume the dominant underlying cause refers to a sensorimotor control dysfunction, whereby a continuous source of nociceptive or neuropathic input remains

Summary

- Be vigilant for serious causes of LBP such as malignancy, infection, fracture etc.
- Evaluate Neurologic Symptoms, Signs, other Red Flags
 - Combination of multiple Red Flag symptoms may be of more help
 - Serious causes of LBP may require specialist referral
- Understand benefits and limitations of physical exammaneuvers
 - Avoid over-utilization of imaging
 - Diagnosis may need modification over longitudinal course of care

References

- Diagnosis and treatment of low back pain: a joint clinical practice guideline from the American College of Physicians and the American Pain Society. Chou R, Qaseem A, Snow V, Casey D, Cross JT Jr, Shekelle P, Owens DK; Clinical Efficacy Assessment Subcommittee of the American College of Physicians; American College of Physicians; American Pain Society Low Back Pain Guidelines Panel. Ann Intern Med. 2007 Oct 2;147(7):478-91.
- Nonpharmacologic therapies for acute and chronic low back pain: a review of the evidence for an American Pain Society/American College of Physicians clinical practice guideline. Chou R, Huffman LH; American Pain Society; American College of Physicians. Ann Intern Med. 2007 Oct 2;147(7):492-504.
- Medications for acute and chronic low back pain: a review of the evidence for an American Pain Society/American College of Physicians clinical practice guideline. Chou R, Huffman LH; American Pain Society; American College of Physicians. Ann Intern Med. 2007 Oct 2;147(7):505-14.
- Deville' WL, van der Windt DA, Dzaferagic' A, Bezemer PD, Bouter LM. The test of Lase gue: systematic review of the accuracy in diagnosing herniated discs. Spine. 2000;25:1140-7.
- A hypothesis of chronic back pain: ligament subfailure injuries lead to muscle control dysfunction. Panjabi MM. Eur Spine J. 2006 May;15(5):668-76. Epub 2005 Jul 27.
- Andersson GBJ. The epidemiology of spinal disorders. In: Frymoyer JW, ed. The Adult Spine: Principles and Practice. 2nd ed. New York, NY: Raven Press; 1997:93–141.
- Response of knee ligaments to prolotherapy in a rat injury model. Jensen KT, Rabago DP, Best TM, Patterson JJ, Vanderby R Jr. Am J Sports Med. 2008 Jul;36(7):1347-57.
- Prolotherapy injections for chronic low back pain: a systematic review. Yelland MJ, Del Mar C, Pirozzo S, Schoene ML. Spine. 2004 Oct 1;29(19):2126-33.

References, cont.

- A systematic review of therapeutic facet joint interventions in chronic spinal pain. Boswell MV, Colson JD, Sehgal N, Dunbar EE, Epter R. Pain Physician. 2007 Jan;10(1):229-53. Review.
- Percutaneous lumbar zygapophysial (Facet) joint neurotomy using radiofrequency current, in the management of chronic low back pain: a randomized double-blind trial. Nath S, Nath CA, Pettersson K. Spine. 2008 May 20;33(12):1291-7.
- Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. Berenson JR, Lichtenstein A, Porter L, Dimopoulos MA, Bordoni R, George S, Lipton A, Keller A, Ballester O, Kovacs MJ, Blacklock HA, Bell R, Simeone J, Reitsma DJ, Heffernan M, Seaman J, Knight RD. N Engl J Med. 1996 Feb 22;334(8):488-93.
- Balloon kyphoplasty for the treatment of pathological fractures in the thoracic and lumbar spine caused by metastasis: one-year follow-up. Pflugmacher R, Beth P, Schroeder RJ, Schaser KD, Melcher I. Acta Radiol. 2007 Feb;48(1):89-95.
- Diagnosis and minimally invasive treatment of lumbar discogenic pain--a review of the literature. Zhou Y, Abdi S. Clin J Pain. 2006 Jun;22(5):468-81.
- Hopwood MB, Abram SE: Factors associated with failure of epidural steroids. Regional Anesth 1993; 18: 238-43.
- Pawl RP, Warren A, Shulman M: Effect of epidural steroids in the cervical and lumbar region on surgical intervention for discogenic spondylosis, Advances in Pain Research and Therapy, Vol. 9. Edited by Fields HL. New York, Raven Press, 1985, pp 791-8.
- Failed back surgery syndrome. Long DM. Neurosurg Clin N Am. 1991 Oct;2(4):899-919.