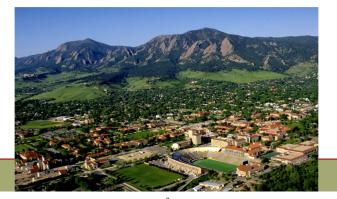

"Listening" and "Talking" to Neurons: Non-neuronal cells amplify pain and drug reward ~ Pathways from basic science to human and veterinary clinical trials ~

Linda R. Watkins


Psychology & Neuroscience, University of Colorado-Boulder co-Founder & co-Chair Scientific Advisory Board, Xalud Therapeutics

"Listening" and "Talking" to Neurons: Non-neuronal cells amplify pain and drug reward ~ Pathways from basic science to human and veterinary clinical trials ~

Linda R. Watkins

Psychology & Neuroscience, University of Colorado-Boulder co-Founder & co-Chair Scientific Advisory Board, Xalud Therapeutics

Disclosures

Xalud Therapeutics:

- > NIH (NCCIH, NIDCR, NIDA, NINDS, NIMH)
- > Department of Defense

Research funding from:

- > ALS Alliance; Prize4Life (ALS)
- > National Multiple Sclerosis Society
- > McManus Charitable Trust
- > Paralyzed Veterans of America Yip! Yip!
- > Craig Spinal Cord Injury Hosp.
- > Craig Neilson Foundation
- > Wings for Life
- > American Kennel Club
- > MayDay Fdn; Cielo Fdn
- > Chancellor's Fund, CU
- > Ohio Vet. Med. Assoc.

> Co-Founder

> Co-Chair Sci Advisory Board

Early stage startup;

entirely Preclinical (no marketed products), developing non-opioid immunomodulatory pain therapeutics

Human Clinical Trials for Osteoarthritis pain now underwav in U.S. (California) & Australia (Adelaide) !!!

Global Concepts

2

Hooray!

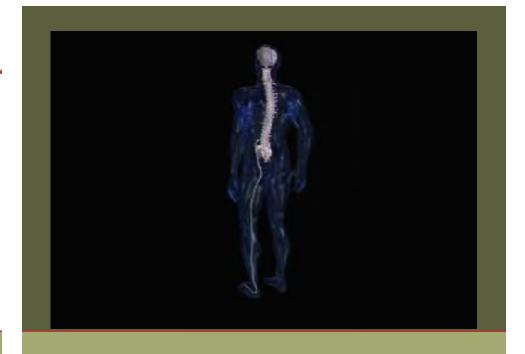
- Views of pathological pain are changing
- Recognition of Non-Neuronal players in pain: glial cells (*microglia & astrocytes*) in spinal & brain pain pathways; peripheral immune cells in involved tissues
- Recognition of Non-Neuronal players in *opioid actions:* Glia disrupt the clinical efficacy of opioids, including morphine, oxycodone, remifentanyl, methadone, etc.
- Clinical implications of glial dysregulation of pain & opioid actions ... glia/immune targeting therapeutics are approaching clinical trials!

Global Concepts

- Views of pathological pain are changing
- Recognition of Non-Neuronal players in pain: glial cells (*microglia & astrocytes*) in spinal & brain pain pathways; peripheral immune cells in involved tissues
- Recognition of Non-Neuronal players in *opioid actions*: Glia disrupt the clinical efficacy of opioids, including morphine, oxycodone, remifentanyl, codeine, etc.
- Clinical implications of glial dysregulation of pain & opioid actions ... glia/immune targeting therapeutics are approaching clinical trials!

Global Concepts

- Views of pathological pain are changing
- Recognition of Non-Neuronal players in pain: glial cells (*microglia & astrocytes*) in spinal & brain pain pathways; peripheral immune cells in involved tissues
- Recognition of Non-Neuronal players in *opioid actions:* Glia disrupt the clinical efficacy of opioids, including morphine, oxycodone, remifentanyl, methadone, etc.
- Clinical implications of glial dysregulation of pain & opioid actions ... glia/immune targeting therapeutics are approaching clinical trials!


6

Global Concepts

5

- Views of pathological pain are changing
- Recognition of Non-Neuronal players in pain: glial cells (*microglia & astrocytes*) in spinal & brain pain pathways; peripheral immune cells in involved tissues
- Recognition of Non-Neuronal players in *opioid actions*: Glia disrupt the clinical efficacy of opioids, including morphine, oxycodone, remifentanyl, methadone, etc.
- Clinical implications of glial dysregulation of pain & opioid actions ... glia/immune targeting therapeutics are approaching clinical trials!

7

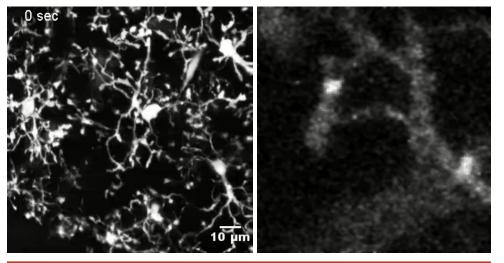
What Have the Past 25+ Years Revealed?

(Watkins *et al., Brain Behav Immunity* 2007; Grace *et al., Nature Reviews Immunology* 2014)

Spinal & trigminal glia (microglia, astrocytes) are *activated in every clinically-relevant model of enhanced pain*:

- Somatic (sciatic etc.) & trigeminal injury
- TMJD, occlusal interference
- Chronic tooth pulp inflammation
- "Migraine" facial allodynia
- Bone cancer; chemotherapy
- Multiple sclerosis
- Spinal cord injury
- Radiculopathy/herniated discs, and so on...

Suppressing spinal & trigeminal glial activation &/or glial proinflammatory cytokines:


•suppresses pain in every clinically-relevant model, returning pain to <u>normal</u>

~ Beyond Pain ~ For Opioids: The Data Support That Blocking Glial/Immune Activation Will:

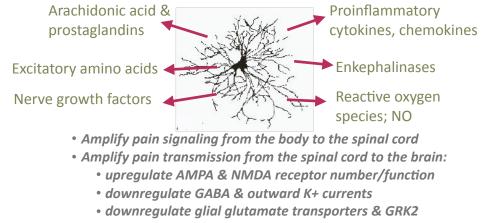
- Improve opioid analgesia
- Suppress opioid tolerance
- Suppress opioid dependence
- Suppress opioid reward linked to drug craving/drug abuse
- Suppress both opioid-induced respiratory depression & constipation

Microglia Actively Survey the CNS & Rapidly Respond to Challenge

Microglia Actively Survey the CNS & Rapidly Respond to Challenge

Videos from: Davalos et al., *Nature Neuroscience* supplements, 8 (2005) 752-758; & Nimmerjahn et al., *Science* supplements, 308 (2005) 1314-1318

11

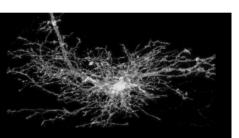


Videos from: Davalos et al., *Nature Neuroscience* supplements, 8 (2005) 752-758

Glia Release Neuroexcitatory, Pain Enhancing Substances

(Watkins et al., Brain Behav Immunity 2007)

Activated glia release:



Glial Proinflammatory Cytokines: Major Players in Neuroexcitation in Pain *... as well as Opposing opioid analgesia!*

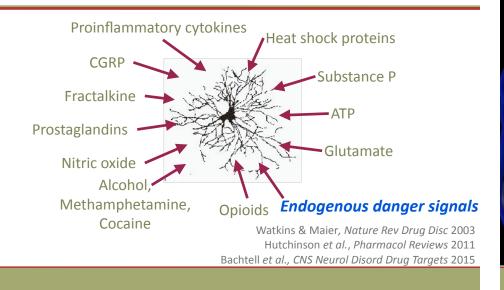
14

What Activates Glia?

16

Movie of glial cell from Mike Dailey's website, U Iowa (Adrienne Benediktsson & Ryan Jeffrey)

Proinflammatory Cytokines:


Tumor Necrosis Factor Interleukin-1 Interleukin-6 Neuroexcitation!

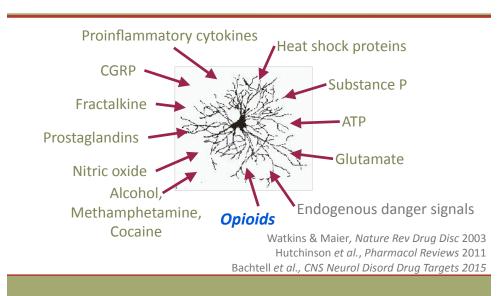
By <u>Enhancing</u> pain, <u>Opposes</u> opioid analgesia

What Activates Glia?

What Activates Glia?

Glial Activation by Endogenous Danger Signals

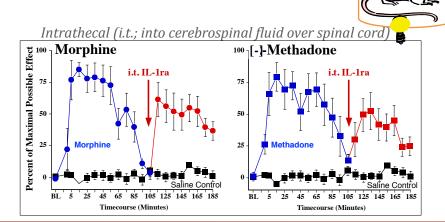
Endogenous danger signal activation of glia (microglia, astrocytes) implicated in pain in multiple rodent models, such as:


- Peripheral nerve injury
- Medication overuse headache, migraine
- Streptozotocin diabetic neuropathy
- Spinal cord injury
- Bone cancer
- Arthritis
- Pancreatitis
- Multiple sclerosis

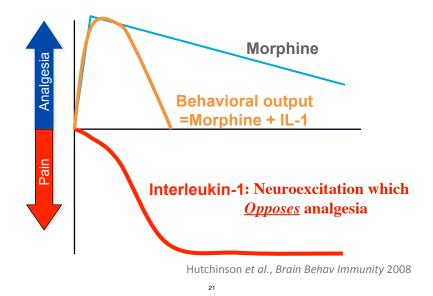
When bad things happen ... endogenous danger signals are created ... glia are activated... pain is amplified by glial painenhancing proinflammatory cytokines

~ Hence perfect target for therapeutics that elevate <u>ANTI</u>-inflammatory cytokines like Interleukin-10

What Activates Glia?


17

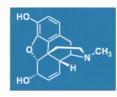
19


Spinal Glial Activation Opposes the Ability of Opioids to Suppress Pain Morphine & Methadone as examples

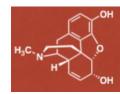
18

Hutchinson et al., Brain Behavior & Immunity, '08

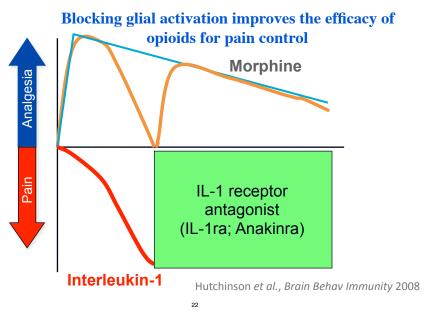
Blocking Spinal Interleukin-1 Unmasks Morphine Analgesia

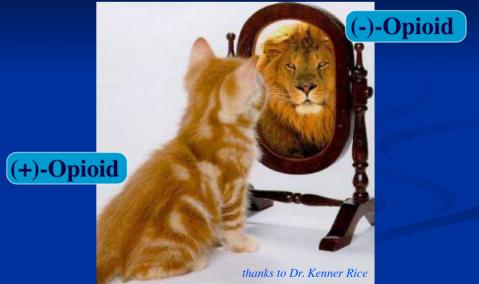

Opioid effects are *different* for neurons & glia

Opioids exist as mirror-image stereo-isomers

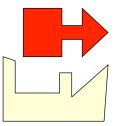

(-)-Morphine

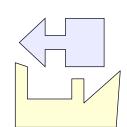
(+)-Morphine


- Binds to µ-opioid receptors
- Powerful analgesic


- **NO** binding to µ-opioid receptors
- NO analgesia

Blocking Spinal Interleukin-1 Unmasks Morphine Analgesia

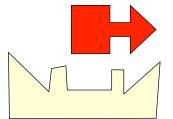

Mirror Image Molecules but, for <u>neurons</u>, not the same!



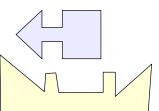
Opioid Effects are Different for Neurons vs. Glia

Neuronal Receptors are Stereoselective

[-]-Morphine: [+]Morphine: **Active** Agonist **INActive** Agonist at Classical Opioid Receptors at Classical Opioid Receptors on Neurons on Neurons


Opioid Effects are Different for

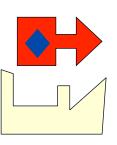
Neurons vs. Glia

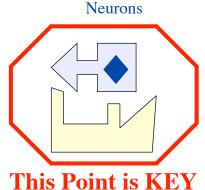

GLIAL Receptors are <u>Not</u> Stereoselective

[-]& [+] Isomers have EQUAL effects on glia

[-]-Morphine: **Active** Agonist at Glial Opioid Receptor

[+]-Morphine: **Active** Agonist at Glial Opioid Receptor

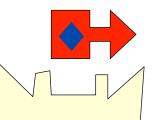



Glial opioid receptor -- Fits BOTH [-] & [+]-enantiomers 27

Opioid Effects are Different for Neurons vs. Glia

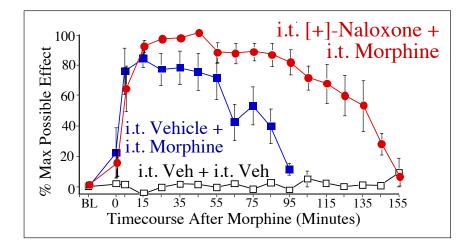
Neuronal Receptors are Stereoselective

[-]-Naloxone & [-]-Naltrexone: [+]-Naloxone & [+]-Naltrexone: **Active** Antagonists at Classical Opioid Receptors at Classical Opioid Receptors on on Neurons



INactive Antagonists

Glial Non-Stereoselectivity Extends to Opioid Antagonists!


[-]-Naloxone & [-]-Naltrexone: **Active** Antagonists at Glial Opioid receptor

[+]-Naloxone & [+]-Naltrexone: **Active** Antagonists at Glial Opioid receptor

[+]-Naloxone should *POTENTIATE* morphine analgesia by: (a) NOT blocking morphine effects on neurons, yet (b) Removing glial activation that *OPPOSES* analgesia! (+)-NaIoxone ~which has no effect on neurons ~ Potentiates Morphine Analgesia!

Hutchinson et al., Brain Behav. Immunity '09

So What is this Mystery Receptor? To target it, one must know what it is

29

Toll-Like Receptor 4 (TLR4):

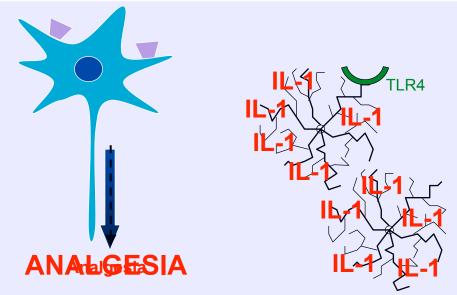
Classically "not me, not right, not OK" receptors

Toll-Like Receptor 4 (TLR4) detects:

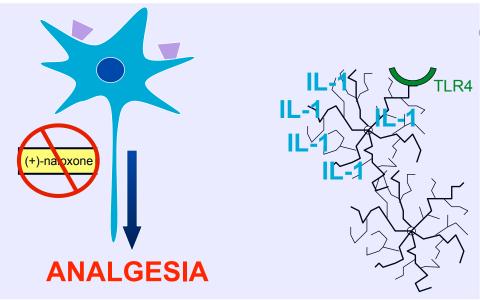
* Bacteria (lipopolysaccharide; LPS)* endogenous danger signals (stress/damage/death)

* All classes of opioids used clinically

31


Hutchinson et al., TSWJ 2007; Br Behav Immun 2008

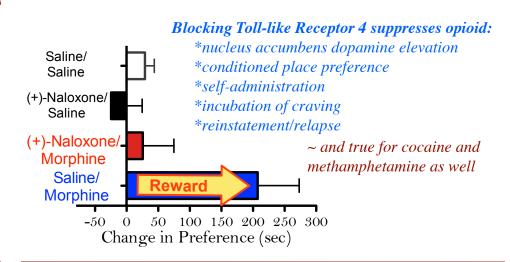
Why is This Important? This Difference Predicts:


Effects on neurons & glia should be separable

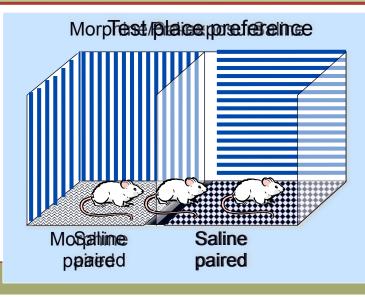
To increase the efficacy of opioids: *structurally modify opioids to not activate glia, or * create a long-lasting version of (+)-naloxone, or other TLR4 antagonists, that only block glial activation

Opioid Activation of Glia Suppresses Analgesia

Opioid Activation of Glia Suppresses Analgesia: Blocked by TLR4 Antagonists


Glia & Opioid Reward: Conditioned Place Preference

Glial Toll-like Receptor-4 (TLR4)



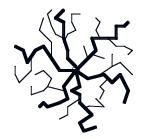
Hutchinson et al., Brain Behav. Immun. 2008

Blocking Toll-like receptor 4 (TLR4) Suppresses Morphine Reward

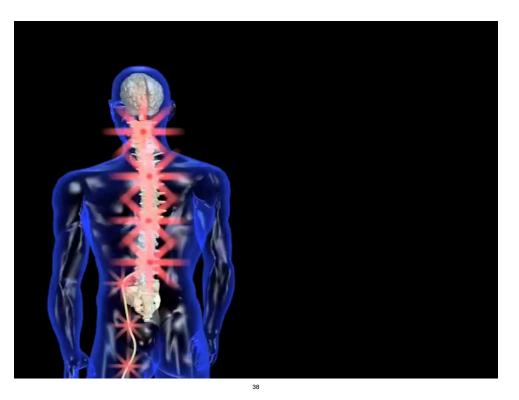
Opioids: Hutchinson et al., *Journal of Neurosci*, 2012; **Cocaine**: Northcutt et al., *Molec Psychiatry* 2015; **Opioids:** Theberge et al., *Biol. Psychiatry*, 2013; **Methamphetamine**: Wang et al., *ACS Chem Neurosci*. 2019

Taken Together, the Data Predict that Blocking Glial / Immune Activation will:

- Suppress pathological pain due to: neuropathy, multiple sclerosis, bone cancer, etc.
- Improve opioid analgesia
- Suppress opioid tolerance
- Suppress opioid dependence
- Suppress opioid reward linked to drug craving/drug seeking
- Suppress respiratory depression, constipation, & (likely) itch


..... and this isn't just for opioids (e.g. effects of cocaine, methamphetamine are also amplified by glia!!)

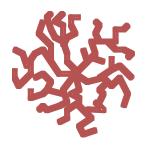
> Watkins et al., *Trends in Pharmacological Sciences* 2009 Hutchinson et al., *Pharmacological Reviews*, 2011


States of Glial Activation: Not Just "Off" or "On" Anymore!

37

Basal State: Boring but Vigilant

States of Glial Activation: Not Just "Off" or "On" Anymore!


Activated State: Proinflammatory

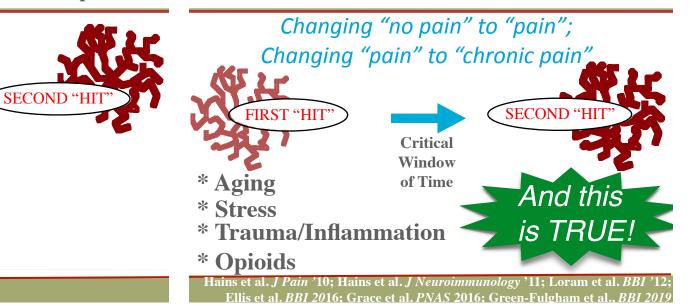
States of Glial Activation: Not Just "Off" or "On" Anymore!

"Primed" State:

 * Can occur for a period of time after prior activation
* No longer producing proinflammatory products... but....Ready for Action!

States of Glial Activation: Not Just "Off" or "On" Anymore!

Reactivation from the"Primed" State: Explodes


into Action in Response to a New Challenge!

Aging Stress Trauma Opioids

Sets the Stage For Chronic Pain??

So.... Does *Prior* glial activation alter the pain response to a <u>NEW</u> challenge?

Hains et al. *J Pain* '10; Hains et al. *J Neuroimmunology* '11; Loram et al. *BBI* '12; Ellis et al. *BBI* 2016; Grace et al. *PNAS* 2016; Green-Fulgham et al., *BBI* 2019

2-Hit Hypothesis: A 2nd "Hit" Can Create a Faster, Strong, Longer Glial Response

Critical

Window

of Time

43

FIRST "HIT

* Aging

* Stress

* Trauma/

* **Opioids**

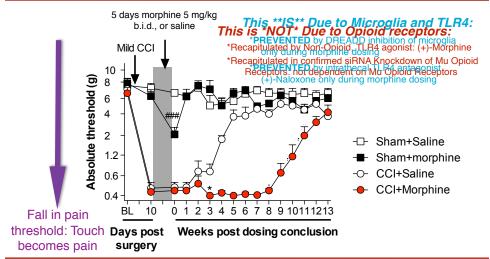
Inflammation

But wait a minute... this makes a scary prediction about opioids given post-trauma

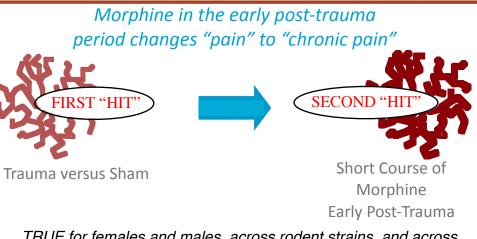
Since ~

Trauma (**Hit 1**) leads to Opioids being given to treat the acute pain (**Hit 2**)

And ~


Trauma and Opioids both activate glia

Then


If glial priming (**Hit 1** → **Hit 2**) amplification of pain is true, then this predicts that opioids (**Hit 2**) given after trauma (**Hit 1**) might have an evil side: a negative long-term consequence of opioids on pain

Peri-Trauma Morphine: Changes "pain" to "chronic pain" after peripheral nerve injury TRUE for not just Morphine: TRUE for Oxycodone and Fentanyl as well!

So.... Does *Prior* glial activation alter the pain response to a <u>NEW</u> challenge?

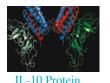
TRUE for females and males, across rodent strains, and across multiple models (every one studied to date)

Grace et al. PNAS 2016; Green-Fulgham et al., BBI 2019

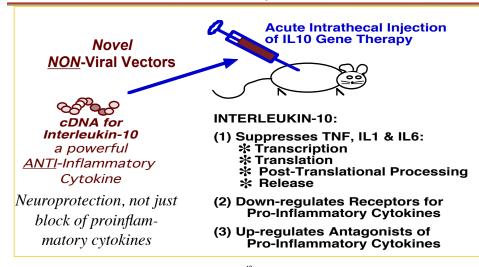
A Focus on Interleukin-10 (IL-10) a potent endogenous <u>Anti</u>-inflammatory cytokine

The importance of central **Pro**-inflammatory cytokines: *across so many neuropathic pain models *across so many independent research labs across the World! suggests that an **Anti**-inflammatory cytokine approach to suppress glial activation might prove successful for neuropathic pain control Plus ~ proinflammatory cytokines are important in diseases like ARTHRITIS: might local, intra-articular IL-10 help arthritis as well?

***1991 (28 years ago!):** We began studying spinal glial dysregulation of pain by <u>pro-</u>inflammatory cytokines; pure basic science


*2000-2017: Progression through eight successive generations of approaches to reach a clinically relevant final version:

8 generations of IL-10 delivery: protein, pegylated protein, adenovirus, adeno-associated virus, naked plasmid DNA, various DNA encapsulations, PLGA slow-release microparticles, D-mannose formulated naked plasmid DNA

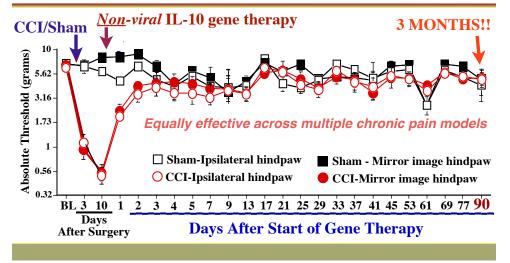

*2009: Xalud Therapeutics was founded

***2017:** Xalud received Investigational New Animal Drug status for dog OA ***2018-ongoing:** U.S. & Australia approval for human OA clinical trials; Underway!

Grace et al. Proc. National Academy of Sci., '16; Green-Fulgham et al. BBI '19

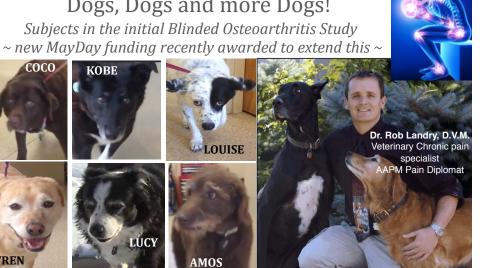
Non-Viral Gene Therapy to Induce Interleukin-10: your Body's Own **<u>ANTI</u>**-inflammatory Cytokine

Extending Non-Viral Interleukin-10 Gene Therapy to Pet Dogs in chronic pain: *intrathecal, intra-articular*



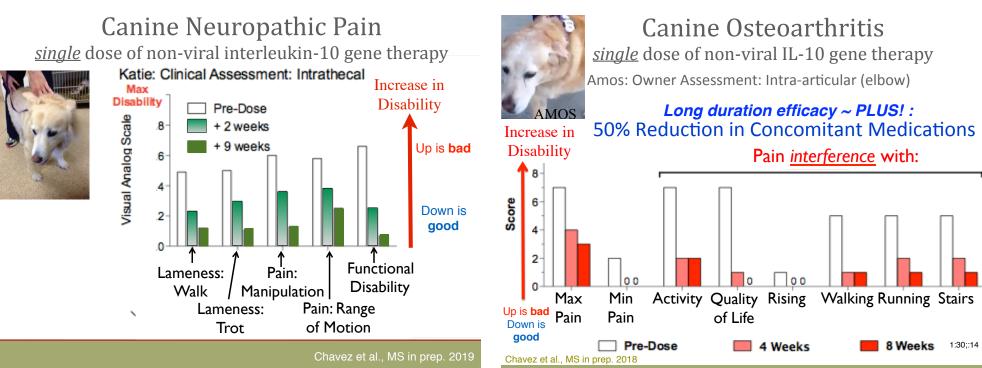
IL-10 gene therapy treats real disease – disease NOT controlled by any currently available pain drugs -- not just rodent models of pain

pet dogs otherwise euthanized as nothing else works


Intrathecal Non-Viral Interleukin-10 Gene Reverses Chronic Constriction Injury (CCI) Induced Neuropathic Pain for 3+ Months

(Sloane et al., Gene Therapy '09; Soderquist et al. Pharmaceut. Res. '10)

50


Dogs, Dogs and more Dogs!

Non-viral IL-10 agent therapy treats real disease – disease NOT controlled by any currently available pain drugs -- not just rodent models of pain

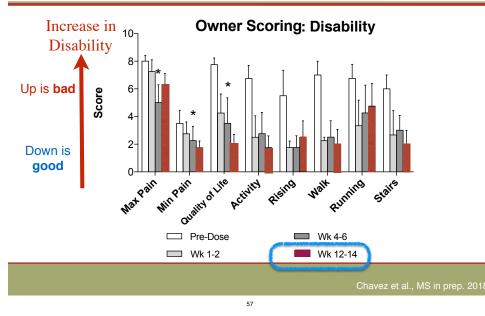
WREN

pet dogs otherwise euthanized as nothing else works

54

Before Bilateral Elbow Intra-articular Injection

2 Months Later: no further treatment


Chavez e

55

OSTEOARTHRITIS / INTRA-ARTICULAR

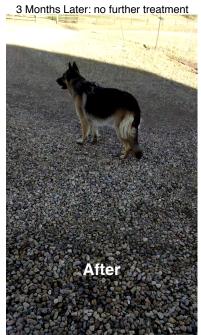
Compiled Data: Single Dose Open-Label OA Dog Study

<u>Single</u> Intra-articular Dose (Males & Females): effective <u>3+ Months</u>!

MayDay Project: Dogs, Dogs and more Dogs! Dogs in the ongoing Double Blinded Dose Response Osteoarthritis Study

pet dogs otherwise euthanized as nothing else works

MayDay Project: Dogs, Dogs and more Dogs!


Dogs in the ongoing Double Blinded Dose Response Osteoarthritis Study

IL-10 gene therapy treats <u>real</u> disease – disease <u>NOT</u> controlled by any currently available pain drugs -- not just rodent models of pain pet dogs otherwise euthanized as nothing else works


Dakota: in double blinded IL10 osteoarthritis study

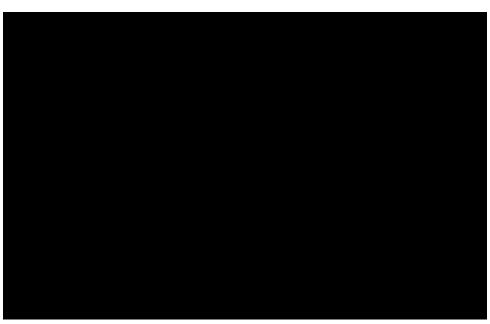


Baer: in double blinded IL10 osteoarthritis study

Before Bilateral Elbow Intra-articular Injection

Ebony: in double blinded IL10 osteoarthritis study

Before Bilateral Elbow Intra-articular Injection


1 Month Later: no further treatment

Owner reports that, before treatment, Ebony had not run in many years

Tucker: in double blinded IL10 osteoarthritis study Bilateral Hip Intra-articular Injection

How Does i.t. IL-10 Gene Therapy Work?

How Does i.t. IL-10 Gene Therapy Work?

Conclusions

Immunology is important; glial cells: volume controls

- ♦ Glial cells do <u>not</u> care about normal pain
- ♦ Glial responses can create and maintain enhanced pain:
 - Physiologically as part of the ancient Sickness Response
 - ▶ *Pathologically* when triggered by neuropathy, cancer, etc
 - Pharmacologically by clinically relevant opioids
- Glial activation now also linked to opioid tolerance, opioid dependence/withdrawal, opioid reward

67

- Proinflammatory cytokines are key
- Targeting glia & glial products may provide a novel approach to pain control & increases opioid efficacy

Conclusions

66

- Immunology is important; glial cells: volume controls
- ♦ Glial cells do <u>not</u> care about normal pain
- ♦ Glial responses can create and maintain enhanced pain:
 - Physiologically as part of the ancient Sickness Response
 - ▶ *Pathologically* when triggered by neuropathy, cancer, etc
 - Pharmacologically by clinically relevant opioids
- Glial activation now also linked to opioid tolerance, opioid dependence/withdrawal, opioid reward

- Proinflammatory cytokines are key
- Targeting glia & glial products may provide a novel approach to pain control & increases opioid efficacy

Conclusions

- Immunology is important; glial cells: volume controls
- ♦ Glial cells do <u>not</u> care about normal pain
- ♦ Glial responses can create and maintain enhanced pain:
 - Physiologically as part of the ancient Sickness Response
 - Pathologically when triggered by neuropathy, cancer, etc
 - Pharmacologically by clinically relevant opioids
- Glial activation now also linked to opioid tolerance, opioid dependence/withdrawal, opioid reward
- Proinflammatory cytokines are key
- Targeting glia & glial products may provide a novel approach to pain control & increases opioid efficacy

Conclusions

- Immunology is important; glial cells: volume controls
- ♦ Glial cells do <u>not</u> care about normal pain
- ♦ Glial responses can create and maintain enhanced pain:
 - Physiologically as part of the ancient Sickness Response
 - ► *Pathologically* when triggered by neuropathy, cancer, etc
 - Pharmacologically by clinically relevant opioids
- Glial activation now also linked to opioid tolerance, opioid dependence/withdrawal, opioid reward
- Proinflammatory cytokines are key
- Targeting glia & glial products may provide a novel approach to pain control & increases opioid efficacy

Conclusions

69

- Immunology is important; glial cells: volume controls
- ♦ Glial cells do <u>not</u> care about normal pain
- ♦ Glial responses can create and maintain enhanced pain:
 - Physiologically as part of the ancient Sickness Response
 - Pathologically when triggered by neuropathy, cancer, etc
 - Pharmacologically by clinically relevant opioids
- Glial activation now also linked to opioid tolerance, opioid dependence/withdrawal, opioid reward
- Proinflammatory cytokines are key
- Targeting glia & glial products may provide a novel approach to pain control & increases opioid efficacy

Conclusions

- Immunology is important; glial cells: volume controls
- ♦ Glial cells do <u>not</u> care about normal pain
- ♦ Glial responses can create and maintain enhanced pain:
 - Physiologically as part of the ancient Sickness Response
 - ▶ *Pathologically* when triggered by neuropathy, cancer, etc
 - Pharmacologically by clinically relevant opioids
- Glial activation now also linked to opioid tolerance, opioid dependence/withdrawal, opioid reward
- Proinflammatory cytokines are key
- Targeting glia & glial products may provide a novel approach to pain control & increases opioid efficacy

